
biXid: A Bidirectional Transformation Language for XML

Shinya KAWANAKA
IBM Tokyo Research Laboratory
shinyak@arbre.is.s.u-tokyo.ac.jp

Haruo HOSOYA
The University of Tokyo

hahosoya@is.s.u-tokyo.ac.jp

Abstract
Often, independent organizations define and advocate different
XML formats for a similar purpose and, as a result, application
programs need to mutually convert between such formats. Exist-
ing XML transformation languages, such as XSLT and XDuce, are
unsatisfactory for this purpose since we would have to write, e.g.,
two programs for the forward and the backward transformations in
case of two formats, incur high developing and maintenance costs.
This paper proposes the bidirectional XML transformation lan-

guage biXid, allowing us to write only one program for both di-
rections of conversion. Our language adopts a common paradigm
programming-by-relation, where a program defines a relation over
documents and transforms a document to another in a way sat-
isfying this relation. Our contributions here are specific language
features for facilitating realistic conversions whose target formats
are loosely in parallel but have many discrepancies in details. Con-
cretely, we (1) adopt XDuce-style regular expression patterns for
describing and analyzing XML structures, (2) fully permit ambi-
guity for treating formats that do not have equivalent expressive-
nesses, and (3) allow non-linear pattern variables for expressing
non-trivial transformations that cannot be written only with linear
patterns, such as conversion between unordered and ordered data.
We further develop an efficient evaluation algorithm for biXid,

consisting of the “parsing” phase that transforms the input docu-
ment to an intermediate “parse tree” structure and the “unparsing”
phase that transforms it to an output document. Both phases use
a variant of finite tree automata for performing a one-pass scan on
the input or the parse tree by using a standard technique that “main-
tains the set of all transitable states.” However, the construction of
the “unparsing” phase is challenging since ambiguity causes differ-
ent ways of consuming the parse tree and thus results in multiple
possible outputs that may have different structures.
We have implemented a prototype system of the biXid lan-

guage and confirmed that it has enough expressiveness and a linear-
time performance, through experiments with several realistic bidi-
rectional transformations including one between vCard-XML and
ContactXML.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
ture; Constraints

General Terms Algorithms, Design, Language, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

September 16–21, 2006, Portland, Oregon, USA.
Copyright c∞ 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

Keywords XML, tree automata

1. Introduction
1.1 Bidirectional transformation
The world has seen XML’s exceptionally rapid and wide accep-
tance as a de facto standard for structured data. One of the reasons
is its openness to any community for freely defining their own new
format by means of schemas. However, one of its consequences
is that different communities propose formats that are structurally
different but represent similar kinds of information. As a typical ex-
ample, both vCard-XML [18] and ContactXML [7] are completely
different formats representing address books, the former being an
XML-ized version of a non-XML format defined as an international
standard and the latter being a format that has newly been defined
by an independent Japanese organization. In such situation, relevant
application programs often need to support both formats, where the
most common way to implement it is to mutually convert between
them. For this purpose, existing XML transformation languages,
such as XDuce [16] and XSLT [4], are unsatisfactory since they
consider only conversions in one way and therefore, in order to
transform back and forth between two formats, we must write two
programs; maintaining their consistency often incurs a high devel-
opment cost and easily becomes error prone.
In the present work, we address this problem by designing a

language called biXid dedicated to the bidirectional transformation
between XML documents, where we only need to write one pro-
gram for converting data in both the forward and the backward di-
rections. The basic design paradigm is programming by relation,
in which the programmer defines a relation over documents and
the system transforms a given document to another in such a way
that these two documents satisfy the relation. This paradigm itself
is quite common, from classical logic programming [22] and rela-
tional query languages [8] to more recent research languages for
XML-text mutual conversion [3] and view updating [10, 19]. Our
aim is, however, to design a language that specifically focuses on
the transformation between two different XML formats, together
with an efficient evaluation algorithm devoted to this language. In
particular, we seriously consider conversion on formats that are de-
fined by independent communities, which typically have structures
loosely in parallel but various discrepancies in details. Since con-
version between such formats is often quite complicated, effective
linguistic supports are highly desirable.
The novelties in the biXid language design are threefold: (1)

adoption of XDuce-style regular expression patterns, (2) full al-
lowance of ambiguity, and (3) support for non-linear bound vari-
ables. Regular expression patterns [15] have first been proposed for
the unidirectional transformation language XDuce [16], which the
second author has been engaged in, for succinct description of the
structure of an XML document and the extraction of its subparts.
In biXid, we deploy this feature for both describing the structures
of two documents and relating their subparts. For example, we can

write the following relation in biXid for converting between frag-
ments of two kinds of address books.

relation item =
person[name[var n as String],

address[var a]*]
<->
card[person-name[var n as String],

location[var l]*]
where
address_content(a, l)

This relates a person element and a card element, where the
pattern on the left-hand-side (LHS) of the <-> sign requires the
person to contain a name element followed by a sequence of
address elements, and similarly the right-hand-side (RHS) de-
scribes the structure of the card. Then, the bound variable n, which
appears in both patterns, specifies that its corresponding subparts,
the contents of name and person-name, are the same. Also, the
variables a and l on both sides together with the where clause spec-
ify that the contents of address and location are constrained by
another relation address_content (whose definition is omitted
here).
Notice that, in the example, since there can be several address

elements in the document on the left, the variable a can be matched
several times; such use of variable is called non-linear and is one
of our important design choices. When corresponding non-linear
variables appear on both sides, each pair of n-th matching values
corresponds to each other. In the above example, the content of
the n-th address corresponds to that of the n-th location. Since
regular expressions frequently contain Kleene stars, this feature
naturally arises and is quite useful for concisely describing relations
without resorting to writing explicit recursions. Further, it is one of
our findings that non-linearity is occasionally indispensable in real
applications. For example, we have observed, in our application
of conversion between vCard-XML and ContactXML, that data
pieces that are scattered on one side need to be put together as a
chunk on the other side; this involves “reordering” of data, which
seems not expressible only with linear variables (Appendix B).
Another design choice that we have made is that we impose

no restriction on writing ambiguous relations, that is, a relation
where a single document on one side may correspond to multiple
documents on the other side. This is because, in real applications,
one of the formats happens to have a richer mark-up structure than
the other. For example, when one format has two representations
for a telephone number while the other has only one, the best we
could do is to write, e.g., the following relation.

relation phone_number =
home_phone[var p as String] |
work_phone[var p as String]

<->
tel[var p as String]

In the forward direction, two documents can transform to a single
document, while, in the reverse direction, two outputs are possible
from one input. In addition to this “multiple representation” case,
we have identified two more use cases where allowing ambiguity is
critical, namely, “freedom of ordering” and “unused data.” We will
explain these in detail in Section 2.3.
We further develop an efficient evaluation algorithm for trans-

formations written in our language. Our strategy uses a form of
non-deterministic tree automata called parsing automata equipped
with facilities for supporting variable binding and where-clause
constraints. In the forward conversion (and symmetrically in the
backward), we build two parsing automata corresponding to the
left-hand-side and the right-hand-side of the relation defined by the

program. We then perform the conversion in two phases, namely,
the “parsing” phase, which generates an intermediate “parse tree”
structure from an input document, and then the “unparsing” phase,
which produces an output document from the parse tree. Both
phases work in one pass in the sense that the former traverses the
input document only once and the latter scans the parse tree also
only once. For achieving this non-backtracking behavior, we use
the classical method that collects all possible states where we can
transit at each step. In the algorithm obtained in this way, while the
“parsing” phase is only a slight variant of a well-known one-pass
membership algorithm (cf. [20]), the “unparsing” phase is novel
and quite involved, where the main complication lies in that ambi-
guity raises different ways of consuming the parse tree with mul-
tiple possible outputs that can in general have completely different
structures.
We have already implemented a prototype system of the biXid

language, and experimented with several realistic applications,
including conversion between vCard-XML and ContactXML.
From these experiments, we have successfully confirmed that
our language features—in particular, non-linear variables and
ambiguity—are quite useful in practice and that our algorithm has
a linear-time performance and enough efficiency even for relatively
large inputs.

1.2 Related Work
XSugar [3] is a language proposed by Brabrand, Møller, and
Schwartzbach for the mutual conversion between XML and text
data. Their language is also based on programming-by-relation and
the program structure has a quite similar flavor to biXid. However,
besides the obvious difference in XML-text or XML-XML con-
version, the details of the designs are different since the intended
application domains are different. XSugar is mainly targeted to the
situation where both an XML format and its corresponding non-
XML version are provided, where the former is for mechanical
processing and the latter is for human reading and writing. In such
case, the two formats are typically defined by the same organization
and, naturally, have a tight correspondence in their structures. With
such application requirement, a simpler language design is suffi-
cient. For example, their templates, which correspond to biXid’s
patterns, do not allow non-linear variables, but they would proba-
bly not need this feature since the tight structural correspondence
requires no data reordering, unlike our case. Furthermore, XSugar
forbids any ambiguity in order to guarantee that the result of one
round-trip transformation (either a forward followed by a back-
ward or the other way) is the same as the original document. This
requirement reasonably arises for the document maintenance in
their case, while ambiguity is inherent in our applications, as ar-
gued above. Note that allowing ambiguity is not just a matter of
omitting the check, but gives rise to a technical challenge in the
evaluation algorithm, as already mentioned.
Another direction of related work is language design for view

updating. The view-updating problem, which has originally been
pursued in the database community, is to solve how we reflect (up-
date) the change to the source data when we take its summary
(view) and then modify it. Several groups of researchers have sep-
arately proposed languages for facilitating view updating by simul-
taneous description of both the source-to-view and the view-to-
source transformations. We are aware of two such languages, Focal
[10] developed by Foster, Greenwald, Moore, Pierce, and Schmitt,
and Inv [19] byMu, Hu, and Takeichi. Both are based on functional
combinators—Focal provides combinators called “lenses” that are
designed to be bidirectional and Inv supports transformation com-
binators that can automatically be inverted by a special operation.
It is rather delicate to compare their languages and ours since the
design principles are quite different, though a few remarks can be

made. First, both Focal and Inv assume classical data structures
as the target of transformation (Focal uses records and Inv uses
standard tuples, lists, disjoint unions, and so on). This means that,
in order to process actual XML data, one needs to resort to either
data-binding [2] or binary-tree representation [17], which often im-
poses a feeling of “impedance mismatch” on the user. In contrast,
biXid’s programming style with regular expression patterns gives
a more direct flavor and thus, we believe, has a stronger appeal
to novice programmers. However, in a more technical perspective,
it seems that two approaches are fundamentally incomparable. On
one hand, it is usually impossible for combinators to express a
case analysis on deep structures because of its “taggedness,” while
this is naturally expressible with regular expression patterns since
they allow full nondeterminism. On the other hand, the combinator-
based approach can easily support composition of multiple bidirec-
tional transformations, while this is not straightforward at all in the
pattern-matching-based approach.
Prolog is one of the most classical languages based on programming-

by-relation. Recently, Coelho and Florido [6] have proposed an ex-
tension of Prolog with regular expression patterns for adapting it to
XML processing. In terms of defining relations, their language es-
sentially includes ours, modulo non-linear patterns. However, our
language has a specific focus on bidirectional transformation be-
tween XML documents and therefore does not need usual facilities
provided by logic programming languages, such as unification of
partially constructed XML fragments. As such, we can concentrate
on developing an efficient evaluation algorithm that takes a single
document for one side and emits a single document for the other
side.
Regular expression patterns adopted in the biXid language have

originally been proposed for the unidirectional XML transforma-
tion language XDuce [16]. In the present work, we extend this with
non-linear variables for easily capturing repeated substructures. Al-
though XDuce’s patterns themselves do not allow non-linearity, it
has a separate extension called filters for composing “regular ex-
pressions over pattern clauses” for a similar purpose. In the early
stage of biXid, we have considered similar “regular expressions
over relation definitions” but dismissed it since it has a crucial de-
ficiency, which is inherited from the original filter proposal, that
it is incapable of the above-mentioned data reordering. Duce [1]
extends XDuce’s patterns with non-linear variables with a differ-
ent semantics. In their case, when a non-linear variable matches
multiple values, it is bound to the concatenation of these values.
While this is often convenient for data extraction, it loses the infor-
mation that the matched values used to be separate substructures
in the original document. Since we intend to relate each individ-
ual substructure with another, this semantics is not suitable for our
purpose.

1.3 Outline
The rest of this paper is organized as follows. In the next section,
we illustrate our language design by using a series of examples
and then, in Section 3, we formalize it. Section 4 presents our
one-pass evaluation algorithm. Then, we will give results of some
preliminary performance experiments in Section 5. Appendix A
gives a translation procedure from our surface language programs
to automata representations. We show some lessons learned from
programming a conversion between vCard-XML and ContactXML
in Appendix B. Proofs of theorems are omitted from this abstract
and will be provided in the full version.

2. Examples
This section aims at illustrating biXid’s language design. We first
give a brief overview of our relation-based programming style and

then explain design details, in particular, our supports for non-linear
variables and ambiguity.

2.1 Programming by relation
We consider a simple biXid application for the conversion between
two different bookmark formats, the Netscape and the XBEL [21]
formats (both with slight simplifications). Let us first see instances
of these formats in Figures 1 and 2. In the Netscape document,
some heading information like the title in h1 is followed by the
main content in dl, where bookmark items (dt) and folders (dd)
are listed. Each folder has a title in h3 and then a dl element
recursively containing an inner content consisting of bookmark
items and folders. The XBEL document has a similar structure
except that, besides the difference in tag names, it has no element
corresponding to head and each content list begins right after a
title element (i.e., XBEL has no tag corresponding to dl).

<html><head>My Bookmarks</head>
<body>
<h1>my bookmarks</h1>
<dl><dt>Foo’s</dt>

<dd><h3>my folder</h3>
<dl> inner folder... </dl><dd>

<dt>Bar’s</dt>
</dl>

</body>
</html>

Figure 1. A Netscape bookmark

<xbel>
<title>my bookmarks</title>
<bookmark href="foo.com">

<title>Foo’s</title></bookmark>
<folder><title>my folder</title>

inner folder... </folder>
<bookmark href="bar.edu">

<title>Bar’s</title></bookmark>
</xbel>

Figure 2. A XBEL bookmark

Let us write a program for converting between these formats
step by step. We first define the top relation to describe the corre-
spondence of the whole documents in both formats.
relation top =
html[head[String],

body[h1[var t as String], dl[var nc]]]
<->
xbel[title[var t as String], var xc]

where
contents(nc, xc)

The structure of each document is described by a regular expres-
sion pattern. That is, the Netscape document is an html element
containing a head and a body subelements where the head con-
tains a string and the body contains an h1 and a dl; the XBEL
document is simpler but quite similar.
In addition to the structure description, patterns extract sub-

structures of documents and assign them to variables. We have two
kinds of variables, terminal and non-terminal variables. A termi-
nal variable is one that comes with a pattern constraint (in the form
... as P) with which the substructure to be extracted must match.
Also, a terminal variable appearing on one side must appear on the

other side, and the substructures corresponding to these variables
are required to coincide. In the example, the content of the h1 on
the left equals to that of the title on the right, andmust be a string.
(A pattern constraint most typically used is String but it could in
general be any structured one. Also, the pattern constraints on the
same variable are usually the same on both sides, but could in gen-
eral be different.)
A non-terminal variable is one that does not have a pattern con-

straint. Instead, two non-terminal variables bound on both sides are
constrained by another relation specified in the where clause. (For
avoiding confusion, we forbid the use of the same non-terminal
variables on both sides.) In the above relation definition, the vari-
ables nc and xc, each bound to the content of the dl element and
the remainder of the title element, are related by the contents
relation defined below.
We next describe a relation between the “contents” parts of the

two formats, which are, on each side, a sequence of bookmark items
and folders.
relation contents =
(var nb | var nf)*

<->
(var xb | var xf)*

where
bookmark(nb, xb),
folder(nf, xf)

In both patterns, since each variable appears under a Kleene clo-
sure *, it may be matched more than once. As mentioned in the
introduction, these are called non-linear variables and work in such
a way that the n-th value matched by a variable on the LHS corre-
sponds to the n-th value matched by the corresponding variable on
the RHS.1 In the above example, since the non-terminal variables
nb and xb are related by bookmark, the n-th values matched by nb
and xb correspond to each other; similarly for the variables nf and
xf. Note that each pattern in this relation definition has no ambigu-
ity thanks to the relation constraints specified in the where clause.
That is, as we will see below, the first component of the bookmark
relation matches only a dt element and that of the foldermatches
only a dd element. Therefore, for any input value, nb and xb have
a unique way of matching. This is also the case for nf and xf.
What remains is to specify relations for “bookmark” parts and

“folder” parts on both sides. For the former, we write the following.
relation bookmark =
dt[a[@href[var url as String],

var title as String]]
<->
bookmark[@href[var url as String],

title[var title as String]]

Here, we have no where clause since it uses only terminal vari-
ables. A label starting with @ represents an XML attribute. For ex-
ample, on the LHS of the bookmark relation, the a element must
contain an attribute href with a string value. Next, for folder parts,
we define the following.
relation folder =
dd[h3[var title as String], dl[var nc]]

<->
folder[title[var title as String], var xc]

where
contents(nc, xc)

Here, we call the contents relation recursively. In this way, we
can describe relations over arbitrarily nested documents.
1 Unlike Prolog, we do not require that all the values matched by the same
variable on one side are equal.

Now, let us see howwe can transform documents by the relation
defined above. We only consider the forward transformation from
the Netscape document in Figure 1; the backward one is symmetric.
Starting with the top relation, we match the input document with
the LHS pattern and obtain the binding
title 7→ "my bookmarks"
nc 7→ <dt>...</dt><dd>...</dd><dt>...</dt>

where nc’s value is the whole sequence contained in the top dl
element. The variable title is terminal and therefore can be used
directly on the RHS, whereas nc is non-terminal and has to be
consulted to the contents relation to figure out what value the
corresponding variable xc is bound to. Therefore we match nc’s
value with the LHS pattern of the contents relation. This time,
since this relation uses non-linear patterns, we bind each variable
to a list of all the matched values sorted in the document order.
nb 7→ <dt>...Foo’s...</dt>; <dt>...Bar’s...</dt>
nf 7→ <dd>...</dd>

Then, we recursively perform this procedure using the relation
bookmark for converting nb’s each value and folder for convert-
ing nf’s value, and eventually obtain the following binding of the
variables xb and xf used on the RHS of the contents relation.

xb 7→ <bookmark>...Foo’s...</bookmark>;
<bookmark>...Bar’s...</bookmark>

xf 7→ <folder>...</folder>

Using this binding together with the RHS pattern, we recon-
struct the following sequence of elements as the “output” for the
contents relation

<bookmark>...Foo’s...</bookmark>
<folder>...</folder>
<bookmark>...Bar’s...</bookmark>

Winding further back to the top relation, we bind the variable xc
on the RHS to the above sequence and, finally, we emit the XBEL
document in Figure 2 as the result of the whole transformation.

2.2 Non-linear variables
As in the example in Section 2.1, non-linear variables are conve-
nient for concisely describing correspondences between repeated
elements. However, one might argue that relations written with
non-linear variables could be rephrased by using only linear vari-
ables. For example, the contents relation given above could be
rewritten as follows.

relation contents_rec =
(var nb | var nf), var nrest

<->
(var xb | var xf), var xrest

where
bookmark(nb, xb),
folder(nf, xf),
contents_rec(nrest, xrest)

| () <-> ()

(The example uses a “union” of relations whose semantics would
be the obvious one. We actually do not support this; the reason will
be explained shortly.) This relation uses a right recursion to estab-
lish the correspondence between elements on both sides in a one-
by-one manner from head to tail. (Note that this slightly changes
the original semantics since it enforces the orderings among book-
marks and folders to be the same on both sides. Of course, such a
small change would entirely be acceptable in practice.) However,
what if we change the original contents relation in the following?

relation contents_reorder =

(var nb | var nf)*
<->
(var xb)*, (var xf)*

where ...

On the LHS, bookmarks and folders can appear any times in any
order, while, on the RHS, bookmarks must appear before folders.
Therefore, in the case where a folder occurs before a bookmark on
the LHS, we must reorder these elements on the RHS. Therefore
this relation does not allow us to use the above-mentioned rewriting
with the combination of right recursion and linear variables. This
idiom occasionally happens in real applications and Appendix B
shows such an instance found in our mutual converter between
vCard-XML and ContactXML.
A subtle semantics on non-linear variables is that the numbers

of times that each variable matches must be equal on both sides.
This has perfectly made sense for the examples seen already. For
example, in the contents_reorder relation above, the forward
transformation always yields exactly the same number of bookmark
items as the input and similarly for folders. However, this same-
number requirement may interact with the constraints expressed in
regular expressions. For example, consider the following relation.

relation many_tels_one_phone =
tel[var t as String]*

<->
phone[var t as String]

The LHS accepts an empty sequence, in which case t is bound to
zero values; also, the LHS accepts a sequence with length more
than one, in which case t is bound to more than one value. In either
case, transformation fails since we cannot fulfill the requirement on
the RHS that t is bound to exactly one value. (Note that, currently,
failure occurs at run time in such case. Alternatively, we could
signal a warning at compile time since such failure is likely to be
a programming mistake. Investigation in this direction is left for
future work.)
Wemay think of a more relaxed semantics that may additionally

supply arbitrary values or may cut off extra values for adjusting the
numbers of bound values on both sides. However, this would lead
to a complicated design problem. For example, consider again the
contents relation given above. If we allow some bound values
to be cut off, this would permit the forward transformation to
always yield an empty sequence since it is a perfectly legitimate
value resulting from the RHS by consuming no bound values.
This is obviously not what we want. How about allowing some
bound values to be added? Since allowing this on one direction of
transformation implies allowing values to be cut off on the other
direction. Therefore this also raises the same problem.
A positive by-product of the same-number requirement is that

we can exploit it for relating optional elements or choices of ele-
ments. For example, in the transformation for the following relation

relation email_info =
email[var t as String]?

<->
internet[var t as String]?

whether email is present or not is conveyed by the number of t’s
values. Likewise, in the following

relation phone_info =
home[var h as String] |
work[var w as String]

<->
private[var h as String] |
official[var w as String]

whether home or work is used is indicated by the numbers of
h’s and w’s values. These can (perhaps more cleanly) be realized,
instead, by introducing unions of relations, e.g.:
relation email_rel =
email[var t as String]

<->
internet[var t as String]

|
() <-> ()

However, we want non-linear variables in the language in any case
and, as far as we can tell, all examples using unions of relations
can be rewritten by non-linear variables. Therefore our current
language design does not support unions of relations.
As a final note, non-linear variables become not as useful as we

might want once a pattern has a complex structure. For example,
consider the following relation.
relation time_seq =
time[day[var d as String],

hour[var h as String]?]*
<->
temps[jour[var d as String],

heure[var h as String]?]*

Since the variable d holds all the days’s contents and, indepen-
dently, the variable h holds all the hour’s contents, we lose the in-
formation that each day and the hour that optionally follows are a
pair. We can overcome this problem by hoisting the inner structure
to another relation as follows:
relation time_seq =
(var e)* <-> (var f)*

where
time(e,f)

relation time =
time[day[var d as String],

hour[var t as String]?]
<->
temps[jour[var d as String],

heure[var t as String]?]

This indicates a certain ad-hoc-ness in our design choice and sug-
gests a further refinement by introducing more structures in vari-
able bindings, e.g., a list of pairs of values, rather than just a list of
values. However, such situations are relatively infrequent and can
often be rephrased in another way like the above example. More-
over, such extension would considerably complicate the language
definition and implementation. For these reasons, we have decided
to stay with the current design.

2.3 Ambiguity
When a relation allows a document on one side to correspond to
multiple documents on the other side, we say the relation to be
ambiguous. It is one of our design choices that we fully permit
ambiguity. In transformation, when several outputs are possible
from an input, we simply choose one of them as an actual result.
Ambiguity arises for various reasons in practice for applications
involving two independently defined formats. We discuss below
typical cases.

Choice of multiple representations Ambiguity arises when a cer-
tain kind of information can be represented only in one way on one
side but in several ways on the other side. We have already shown
an example in the introduction where one format has several rep-
resentations for a telephone number while the other has only one.
Another typical situation is when one of the formats allows a choice

of an element or an attribute to put a certain kind of information
(this idiom is also known as attribute-element constraints; see [14]
for related discussions).

relation identification =
person[
(@id[var i as String] | id[var i as String]),
name[var n as String]

<->
employee[idnum[var i as String],

name[var n as String]

Freedom of ordering Ambiguity also arises when either side
involves a repetition of alternation. For example, consider again
the contents relation given above.

relation contents =
(var nb | var nf)*

<->
(var xb | var xf)*

where
bookmark(nb, xb),
folder(nf, xf)

Recall that, in the discussion of the transformation in Section 2.1, at
the point where we reconstruct an output for the RHS of contents
from the binding of xb and xf, our previous explanation has silently
chosen the same ordering of bookmarks and folders as the input and
yielded:

<bookmark>...Foo’s...</bookmark>
<folder>...</folder>
<bookmark>...Bar’s...</bookmark>

However, this is actually only one possibility. What the semantics
of non-linear variables implies is that the ordering among book-
marks and the ordering among folders are each preserved; any out-
put satisfying this constraint is possible. Therefore the following
ordering is also possible, for example.

<folder>...</folder>
<bookmark>...Foo’s...</bookmark>
<bookmark>...Bar’s...</bookmark>

For this particular example, we can rewrite it by using right re-
cursion for eliminating ambiguity as in Section 2.2. However, in
the same section, we have shown the following variant of the
contents relation

relation contents_reorder =
(var nb | var nf)*

<->
(var xb)*, (var xf)*

where ...

which does not permit such rewriting. Note that, in this example,
the backward transformation has the same ambiguity on ordering
as we have discussed. Therefore allowing ambiguity is of critical
importance in our language design.

Unused data Yet another cause of ambiguity is that a certain kind
of information representable in one format does not appear in the
other. For example, in the top relation given above

relation top =
html[head[String],

body[h1[var t as String], dl[var nc]]]
<->
xbel[title[var t as String], var xc]

where ...

the content of head on the left is not used on the right. This is
not a problem in the forward transformation, but it is in the back-
ward direction since we need to fill in something there. Fortunately,
we have specified that, whatever head contains, the relation holds;
therefore we can put an arbitrary string in it. In practical applica-
tions, more structured patterns than String can appear for unused
data. For example, the above head pattern can be made more com-
plicated like
head[meta[String]*, title[String], base[String]]

in which case an arbitrary structured value matching this pattern
can be emitted for this part.
As already mentioned, our semantics for choosing one of multi-

ple possibilities is nondeterministic. This design choice is for sim-
plifying the definition and the implementation of the language and
thus focusing on studying the issues specific to bidirectional trans-
formations. There can be other choices introducing some kind of
priority rules (the most typical one is “first-match,” which takes the
earliest matching pattern [15]; more discussions can be found in
[13]). We have not yet examined any implication in the program-
ming nor the algorithmic aspect, though.

3. Language Definition
This section formalizes the syntax and semantics of our language.
For simplicity, we elide XML attributes and texts from our formal-
ism, though we continue to use them in examples. Details on our
treatment of attributes will be given in the full version of this paper.

3.1 Syntax
We assume a set L of labels, ranged over by e. We define values t
by the following grammar.

t ::= ε
ØØ <e>t</>

ØØ t t

That is, a value is a sequence of elements, each consisting of a label
and another value (an empty sequence is written ε). We abbreviate
an element <e>ε</> with an empty content by <e/>. The set of all
values is denoted by T .
We next define the syntax of programs. We assume a set V of

variables, a set VT of terminal variables, and a set VN of non-
terminal variables such that V = VT ∪ VN and VT ∩ VN = ∅. We
use x, xT , and xN to range over V , VT , and VN , respectively. We
define patterns P by the following grammar.

P ::= ()
ØØ var xT as P

ØØ var xN

ØØ

e[P]
ØØ P, P

ØØ (P | P)
ØØ P∗

We defineVar(P) as the set of all variables appearing in the pattern
P , and VarN (P) = Var(P) ∩ VN . As usual, we use other regular
expression operators for shorthands, namely, P? for (P

ØØ ()) and
P+ for (P, P∗). A programΠ is a finite set of relation definitions,
each of which has the form

relation r = P ↔ P whereW

where r is a relation name and W , called where-clause, is a finite
set of relation constraints each having the form r(xN , xN). We
assume any program to declare each relation name at most once and
thus can regard it as a finite mapping from relation names to triples
(P ↔ P where W). Also, we require the program to declare the
special relation name top (from which the interpretation begins).
Further, in each relation definition
relation r = P ↔ Q where {r1(x1, y1), . . . , rn(xn, yn)}

the pattern on each side must contain a disjoint set of non-
terminal variables, each constrained by a relation constraint ex-
actly once, i.e., we require that VarN (P) ∩ VarN (Q) = ∅, that

{x1, . . . , xn} = VarN (P), that {y1, . . . , yn} = VarN (P), and
that xi 6= xj and yi 6= yj for any i 6= j. Lastly, all relation names
that are referred to must be declared: ri ∈ dom(Π) for each i.
From now on, we assume a fixed program Π.
We impose three algorithmically motivated restrictions on the

syntax, namely (1) regularity, (2) non-overlapping of pattern vari-
ables, and (3) non-nullability of repeated patterns. Regularity is for
ensuring that each side of the whole relation defined by a program
accepts only a regular tree language. For example, in the following
relation definition

relation r =
(a[], var x, b[]) | () <-> ...

where
r(x, ...)

the LHS accepts the set of sequences consisting of the same number
of a’s and b’s, which goes beyond regularity. Confining ourselves
to regularity allows us to use a finite-automata-based framework,
greatly simplifying the algorithmics. For ensuring regularity, we
use the standard condition that “any recursion must be enclosed by
a label.” A formal definition is omitted from this abstract.
The second restriction, non-overlapping of pattern variables, is

for ensuring that the same element is never bound to more than
one variable. This restriction particularly simplifies the part of
the algorithm generating the output. For example, if we write the
following relation

relation r =
(var x as a[String]), (var y as a[String])

<->
var x as (var y as a[String])

the forward transformation would have to check that the two a’s
are identical since these must become the same element in the
output. The formal statement for the restriction is simple: for any
occurrence of the form var x as P , we require that Var(P) = ∅.
The third restriction, non-nullability of repeated patterns, is for

avoiding the possibility that a variable may be bound to a list of an
arbitrary number of empty sequences, which would substantially
complicate the evaluation algorithm. For example, consider the
pattern (var x as a[]?)*. Given an empty sequence as input,
the length of the list that may be assigned to x has no upper bound.
Our actual restriction is slightly stronger: it forbids any repetition
of a pattern that may match an empty sequence. This also rejects
patterns with no variable at all, e.g., (a[]?)*, but this seems to
cause little problem in practice. A formal definition is elided from
this abstract.

3.2 Semantics
As already mentioned, a variable is bound to a list of values. Since
a value itself is a sequence, we introduce a notation for avoiding
the confusion between lists and sequences. A list of n objects o1,
o2, . . . , and on is written by o1; o2; . . . ; on. We also use ; for the
operation to concatenate two lists. An empty list is written •.
A binding β is a total mapping from variables to lists of values.

We write {x 7→ l} for the binding that maps the variable x to
the list l and any other variable to an empty list. Analogously, we
write {} for the binding that maps every variable to an empty list.
In addition, we define the binary operator ⊕ for combining two
bindings in a way that concatenates the two lists that each variable
is bound to. That is, (β1⊕β2)(x) = β1(x); β2(x) for each variable
x.

We then define the matching judgment t # P ⇒ β, read “value
t matches pattern P with binding β,” by the following set of rules.

B-UNIT

ε # () ⇒ {}

B-NON

t # var xN ⇒ {xN 7→ t}

B-TERM
t # P ⇒ {}

t # var xT as P ⇒ {xT 7→ t}

B-LAB
t # P ⇒ β

<e>t</> # e[P] ⇒ β

B-CAT
t1 # P1 ⇒ β1 t2 # P2 ⇒ β2

t1 t2 # P1, P2 ⇒ β1 ⊕ β2

B-ORL
t1 # P1 ⇒ β

t1 # P1|P2 ⇒ β

B-ORR
t1 # P2 ⇒ β

t1 # P1|P2 ⇒ β

B-REP
t1 # P ⇒ β1 . . . tn # P ⇒ βn

t1 . . . tn # P∗ ⇒ β1 ⊕ · · ·⊕ βn

In B-CAT and B-REP, the same variable can be bound to different
lists of values in the subpatterns, in which case the resulting binding
maps the variable to the concatenation of these lists. In B-TERM,
the subpattern always returns an empty binding since, as we have
required, it contains no variable. On top of the matching judgment,
we define the relating judgment Π ` r(t, u) by the following rule

Π(r) = (P ↔ Q whereW) t # P ⇒ β u # Q ⇒ ∞
∀x ∈ VT . β(x) = ∞(x) ∀r0(x, y) ∈ W. Π ` r0(β(x), ∞(x))

Π ` r(t, u)

where we write Π ` r((t1; . . . ; tn), (u1; . . . ; un)) when Π `
r(ti, ui) for i = 1, . . . , n. That is, trees t and u are related by
r when these are matched by the corresponding patterns. Further,
the yielded bindings map each terminal variable to the same list of
values and each non-terminal variable to the same length of lists
whose each corresponding pair of elements is related accordingly
to the where-clause. Finally, we define the whole program’s relating
judgment Π ` (t, u) simply by Π ` top(t, u).

4. Evaluation Algorithm
This section presents an algorithm whose goal is to produce an
output value t0 from a program Π and an input value t such that
Π ` (t, t0). We focus here only on the forward transformation since
the other direction is symmetric. Our strategy, as usual, consists
of the static and the dynamic parts. In the static part, we convert
the program into two instances of parsing automata, where one of
these (“LHS automaton”) represents a “package” of the patterns
appearing on the left-hand-sides of all the relations and the other
(“RHS automaton”) represents one on all the right-hand-sides. The
dynamic part executes the automata with the input in two phases.
The first phase is called “parsing” and generates an intermediate
“parse tree” data structure from the input value and the LHS au-
tomaton; the second phase is called “unparsing” and produces an
output value from the intermediate structure and the RHS automa-
ton. Both phases are one-pass; this is achieved by a standard tech-
nique that “collects all possible states.” As a result of using this, the
parsing phase actually yields a set of all possible parse trees, from
which the unparsing phase produces a set of all possible outputs, as
explained in the sequel.
Below, we first give our automata model and then present our

one-pass algorithms for the parsing and the unparsing phases. An
automaton construction from programs in the surface language is
presented in Appendix A.

4.1 Parsing Automata
Overview To see what parse trees are, consider first the following
relation definitions.

relation top =
(var x as a[]), var y <-> ...

where
sub(y, ...)

relation sub =
b[], (var z as c[])+ <-> ...

According to the semantics formalized in Section 3.2, we first
obtain a binding by matching the input with the top relation’s LHS
and then, for the non-terminal variable y, we evaluate the LHS
of the corresponding sub-relation sub with the value to which y
is bound. For efficiency, our strategy evaluates both top’s LHS
and sub’s LHS at the same time and produces an intermediate
structure that combines bindings obtained from these. However, we
need to be able to identify which relation each binding belongs to.
Therefore our intermediate structures, a.k.a. parse trees, have the
form of a binding that not only maps terminal variables to values
but also recursively maps non-terminal variables to other bindings.
In the above example, from the input value

<a/><c/><c/>

we generate the following parse tree.

{x 7→ <a/>, y 7→ {z 7→ (<c/>; <c/>)}}
That is, the parse tree holds, in addition to a binding of the terminal
variable x to a value, a binding of the non-terminal variable y to a
“sub-binding” that records values for the terminal variable z used
in the sub relation.
Parsing automata aim at representing a package of patterns that

yields such parse tree while accepting a value. They are actually
exactly the same as standard (nondeterministic) finite tree automata
except that we devise a mechanism calledmarkers for treating vari-
able binding and relation constraints. Before explaining markers,
what an “accepting” automaton corresponding to the above top
example should look like, besides binding and relation constraints?
We can easily see that such an automaton can be obtained by con-
structing an automaton for top’s LHS where an automaton for
sub’s LHS is embedded as the “sub-automaton” corresponding to
the pattern var y.
On top of such automaton, we add markers to states in order

to be able produce an appropriate parse tree. We have four kinds
of markers. Two have the form BB(xT) (“binding begins”) and BE
(“binding ends”) and are related to terminal variables. That is, for a
pattern of the form var xT as P , we add the mark BB(xT) to the
starting state of the sub-automaton for P and BE to its final state.
When the automaton runs, it generates a binding of xT to the se-
quence accepted between these states. Two other kinds of markers
have the form AB(xN) (“automaton begins”) and AE (“automaton
ends”) and are related to non-terminal variables. That is, for a pat-
tern of the form var xN and the sub-relation that constrains xN

(note that it is uniquely determined thanks to the syntactic restric-
tions in Section 3.1), we add the mark AB(xN) to the starting state
of the sub-automaton representing the sub-relation’s LHS; we also
mark AE to its final state. When the automaton runs, it generates
a binding of xN to a sub-binding yielded by the sub-automaton.
As an example, a parsing automaton corresponding to the relation
definitions above looks like the following.

BB(x) BE;AB(y) BB(z) BE;BB(z) BE;AE

s0
a s1

b s2
c s3

c

c

s4

(For brevity, each transition here has only one “destination” state
corresponding to the sequence remaining after a label. Later in

the formalization, we will augment each transition with another
destination state for matching the content of the label.) The whole
automaton corresponds to the top relation and the sub-automaton
between s1 and s4 to the relation sub. Note here that each state
is associated with a list of markers. This is because a single state
can be the end of a binding (or a sub-automaton) and the beginning
of another at the same time. Also, when a variable binds an empty
sequence, markers for both the beginning and the end of the same
variable are put to a single state.
A parsing automaton can be used also in the unparsing phase

by swapping the roles of the (input) value and the parse tree. Note
that, in this, we follow transitions for producing nodes of a value
that are matched by the transitions, rather than for consuming such
nodes. For example, from the parse tree

{x 7→ <a/>, y 7→ {z 7→ (<c/>; <c/>)}}
the above automaton first consumes the value <a/> in x’s binding,
checks that it is accepted by the transition between BB(x) and BE,
and emits it. After the marker AB(y), we proceed the execution
with the sub-parse-tree {z 7→ (<c/>; <c/>)}, where we first
silently emit (since we follow the transition with label b)
and then proceed to consume each of z’s values. Eventually, the
automaton outputs the value <a/><c/><c/>. Using parsing
automata symmetrically both for “parsing” and “unparsing” is one
of the simplicities of our evaluation strategy.

Syntax and semantics A parsing automaton M is a tuple
(S, S0, F, ∆, χ) where S is a finite set of states, S0 ⊆ S is a set of
initial states, F ⊆ S is a set of final states, ∆ ⊆ S × L × S × S
is a set of transition rules, and χ ∈ S → K∗ associates each state
with a list of markers. Here, markers v ∈ K are defined by the
following:

v ::= BB(xT)
ØØ BE

ØØ AB(xN)
ØØ AE

For visual appeal, we sometimes write s
e[s1]−−−→ s2 for a transition

rule (s, e, s1, s2) and call s1 content state and s2 remainder state.
Parsing automata constructed from biXid programs obey a cer-

tain nesting constraint on markers and the algorithms given in the
sequel assume only such automata. Namely, BB and BE makers
and AB and AE markers must appear in a nested way in the same
“horizontal” level, i.e., an end marker is reachable from its begin-
ning marker by taking remainder states. Moreover, since the “non-
overlapping requirement” says that the pattern constraint of each
variable pattern must not contain other variables, no marker can
appear between a BB and its corresponding BE even in “deeper”
levels, i.e., anywhere reachable by taking both content and remain-
der states. To summarize these, suppose that there is a sequence
s0

e1[s0
1]

−−−−→ s1
e2[s0

2]
−−−−→ . . .

en[s0
n]

−−−−→ sn ∈ ∆ where sn ∈ F and
either s0 ∈ S0 or (s, e, s0, s

0) ∈ ∆ for some s, s0, e. Then, we
require that the list χ(s0); χ(s1); . . . ; χ(sn) satisfies the following
grammar.

V ::= BB(xT); BE
ØØ AB(xN); V ; AE

ØØ •

In addition, suppose that there is a sequence s1
e2[s0

2]
−−−−→ . . .

en[s0
n]

−−−−→
sn such that χ(s1) = (. . . ; BB(xT)), χ(s2) = •, . . . , χ(sn−1) =
•, and χ(sn) = (BE; . . .). Then, we require thatmarks(s0i) = ∅ for
each i = 2, . . . , n, wheremarks(s) is the set of markers appearing
in the states reachable from s. In this case, the states s2, . . . , sn−1

are said to be in the scope of xT .
A parse tree b is inductively defined as a total mapping from

terminal variables to lists of values and from non-terminal variables
to lists of parse trees. We use notations similar to those for bindings,
namely, {x 7→ l} for the mapping from the variable x to l and from
any other variable to an empty list), and {} for the mapping from

any variable to an empty list, and the “concatenation” ⊕ of two
parse trees similarly defined as before. The set of all parse trees is
written as B.
A parsing automaton M = (S, S0, F, ∆, χ) works in terms

of configurations of the form (s, x⊥, p, b) where s ∈ S is the
“current state,” x⊥ ∈ VT ∪ {⊥} is the “current scope,” p ∈
(VN ×T)∗ is the “current stack” explained below, and b ∈ B is the
“current parse tree.” The automaton operates on these components
of configuration mostly when it steps on a state and processes the
list of markers associated to the state. We formalize this behavior
by the function pms (“process markers”) defined by

pms(s, x⊥, p, b) = pm(vn, (. . . (pm(v1, (s, x⊥, p, b))) . . .))

where (v1; . . . ; vn) = χ(s) and each individual marker vi is
interpreted by the following function pm:
pm(BB(xT), (s,⊥, p, b)) = (s, xT , p, b⊕ {xT 7→ ε})
pm(BE, (s, xT , p, b)) = (s,⊥, p, b)
pm(AB(xN), (s,⊥, p, b)) = (s,⊥, ((xN , b); p), {})
pm(AE, (s,⊥, ((xN , b0); p), b)) = (s,⊥, p, b0 ⊕ {xN 7→ b})
Markers BB(xT) and BE operate on the current scope and the
current parse tree. That is, the marker BB(xT) sets the scope to
the terminal variable xT and the marker BE closes it as ⊥. The
marker BB(xT) also appends a new empty sequence value to the
list that xT is bound to in the current parse tree. In the scope of xt,
the automaton accumulates each consumed element to this value.
Markers AB(xN) and AE operate on the current stack as well as the
current parse tree. Let us first explain what a stack is for. Recall
that a parse tree is a tree of bindings where each inner binding is
constructed while evaluating a sub-relation. At a moment where
evaluation of a sub-relation proceeds, a stack holds the list of partial
bindings that have been being built for the parent and ancestor
relations. In our example, while evaluating the sub relation and
building the inner parse tree {z 7→ (<c/>; <c/>)}, the stack
holds the partial parse tree {x 7→ <a/>} that has been build for
the top relation. When we return from the sub relation, we need
to add a binding of y to the constructed inner parse tree. For this,
we also remember the variable y in the stack. In general, when the
automaton encounters an AB(xN) marker, it pushes the pair of the
variable xN and the current parse tree onto the current stack p and,
at the same time, sets up an empty parse tree for evaluating the sub-
automaton that is now starting. Then, when the automaton reaches
the corresponding AEmarker, it pops the variable xN and the parent
parse tree b0 from the stack, augments this parse tree with a binding
of xN to the current parse tree, and sets the resulting parse tree as
the current one.
The behavior of a parsing automaton is described by the parsing

relation of the form M ` t ¶ (s, x⊥, p, b) → b0, read “automaton
M parses value t from configuration (s, x⊥, p, b) with parse tree
b0.” For brevity, the definitions in the sequel assume an automaton
M = (S, S0, F, ∆, χ) and thus omits any mention of M without
confusion. The parsing relation is defined by the following rules.

(s,⊥, p0, b0) = pms(s, x⊥, p, b) s ∈ F

≤ ¶ (s, x⊥, p, b) → b0
[I-ACCEPT]

(s, x0⊥, p0, b0) = pms(s, x⊥, p, b)
(s, e, s1, s2) ∈ ∆ b2 = chtl(x0⊥, b0, <e>t1</>)

t1 ¶ (s1,⊥, p0, b2) → b3

t2 ¶ (s2, x
0
⊥, p0, b3) → b4

<e>t1</>t2 ¶ (s, x⊥, p, b) → b4
[I-TRANS]

The rule I-ACCEPT first processes the markers and returns the
resulting parse tree if the state is final. The rule I-TRANS also first
processes the markers. Then, if the automaton is in the scope of
xT , we append the element <e>t1</> to the end of the last value

in the list of xT ’s binding (which is the temporary value that the
automaton is building at this moment). This operation is done by
using the following auxiliary function chtl (“change tail”):

chtl(xT , b⊕ {xT 7→ t0}, t) = b⊕ {xT 7→ t0 t}
chtl(⊥, b, t) = b

Then, with the parse tree b2 obtained from this and the content state
s1, the rule I-TRANS proceeds to the content value t1, yielding an-
other parse tree b3. (Note that we reset the scope to ⊥ when enter-
ing in the content state since we must not append inner elements to
the temporary value.) Further, with this parse tree and the remain-
der state s2, we continue to process the remainder value t2. We can
now define the whole semantics of parsing automata: automatonM
parses value t to parse tree b when M ` t ¶ (s,⊥, •, {}) → b for
some s ∈ S0.
The already-mentioned “nesting” constraint on a parsing au-

tomaton ensures its “nesting” behavior. That is, we set the scope
closed at the whole beginning, at a content state (the fourth premise
of I-TRANS), or at the entry of a sub-automaton (in pm(AB(xN)));
then, the scope is ensured to be closed again when we reach a fi-
nal state (the first premise of I-ACCEPT) or at the exit of the sub-
automaton (in pm(AE)). Similarly, we start with an empty stack at
the whole beginning and we ensure that the stack returns to be
empty at the end. Also, the nesting requirement guarantees that the
stack at a content state and the one at a final state are the same.
(The last point allows the rule I-TRANS to use the same stack p0

at the content state s1 and at the remainder state s2.) In addition
to these, the “non-overlapping” constraint ensures that, when pro-
cessing markers, a BB(xT) and an AB(xN) can expect the scope to
be closed.
By using the semantics of parsing automata, we can now

rephrase the goal of our algorithm as “given a value t with two
automata ML and MR, find another value t0 such that ML parses
t to a parse tree b and, simultaneously,MR parses t0 to b, for some
b.” (Though, note that, in order to be able to use the same b here, we
need to rename non-terminal variables appearing in each relation,
e.g., replace each occurrence of xN with x0N whenever r(xN , x0N)
is in the where-clause.) The correspondence between the surface
language semantics and the automata semantics is intuitively clear
and therefore omitted from this abstract.

Simplification for unparsing The unparsing phase needs a care
for ensuring termination. For example, in the following pattern

((var x as a[]) | b[])*

a naive algorithm would diverge by taking, at each repetition,
the choice of emitting a b element without consuming x’s values
at all. Although there could be some dynamic way of solving
this problem, our approach is to statically rewrite such patterns to
harmless ones. For example, we transform the pattern above to:

(var x as a[])*

This is legitimate since any output value would perfectly satisfy
the original constraint even though there is no longer the possi-
bility that the output contains any b element. Note that we cannot
perform the same transformation for the parsing side since it would
incorrectly reject some values that need to be accepted. This further
implies that we need to create, in total, four parsing automata for
a given program: two for the parsing and the unparsing phases, in
each of the forward and the backward directions.
Formally, simplification transforms, from inner to outer, each

pattern P∗ that does not appear under a (var x as . . .), in the
follow way:

1. convert P to an equivalent pattern of the form (P1

ØØ P2

ØØ . . .
ØØ

Pn) where n ≥ 1 and each Pi does not have a choice at the

top level. This can be done essentially by distributing choices
appearing in concatenations. For example, P1, (P2

ØØ P3), P4 is
converted to (P1, P2, P4)

ØØ (P1, P3, P4);

2. rewrite (P1

ØØ P2

ØØ . . .
ØØ Pn)∗ to (P1∗, P2∗, . . . , Pn∗);

3. for each i, replace Pi∗ with () if Var(Pi) = ∅.

Note that it is incorrect to apply this transformation for a pattern
under a variable binder like (var x as (a[] | b[])*) since
it would change the pattern constraint to () and therefore would
cause a wrong failure for valid bindings given from the parsing
phase.

4.2 Parsing phase
This phase takes the “LHS” parsing automatonML = (S, S0, F, ∆, χ)
and the input value. It then traverses the input value with only one
visit to each node and produces the set of all possible parse trees.
During the traversal, we work with sets of parsing configurations
each of the form c = (s, x⊥, k, p, b). They are similar to configura-
tions used in the description of the semantics except that each has a
list k ∈ (S × (VT ∪ {⊥}))∗ of parsing continuations. To see why
we need them, consider processing the value <e>t1</>t2 with a set
of configurations one of which has a state s. For this, we first find
a transition (s, e, s1, s2), then process the content value t1 from
the state s1, and eventually obtain a parse tree b for this part. After
this, we need to proceed to the remainder value t2 with this parse
tree, but from which state? At this point, the configuration loses the
information that we came from the content state s1 of the above
transition and hence we should next go to s2. In the semantics,
this information is retained in the premise of I-TRANS, whereas
the algorithm cannot take the same approach since it deals with a
set of configurations that may possibly have stem from different
transitions. Therefore we record this information in configurations
themselves. Since element nesting can be arbitrarily deep, we keep
a list of states to return. In addition, since we set the current scope
to ⊥ when entering in a content state (the fourth premise of I-
TRANS), we need to revert it upon return. Therefore we also hold
this information in the list. As a result, each configuration is added
with a list of pairs (s, x⊥) describing the state s to continue for the
remainder value and its scope x⊥; each pair here is called parsing
continuation.
The algorithm for the parsing phase is defined by the following

function parse taking a parsing automaton M and an input value
t and returning a set of parse trees

parseM (t) = { b | (s,⊥, •, •, b) ∈ convertp(C0, t) }

where the initial set C0 of parsing configurations is as follows.

C0 = { (s,⊥, •, •, {}) | s ∈ S0 }

(Since the parsing phase works with the fixed automaton M , we
will avoid further mentioning it in the sequel. Also, we add the sub-
script p to each function defined here for indicating that it is related
to the parsing phase.) That is, we start with the configurations each
with an initial state, the closed scope, an empty parsing continua-
tion, an empty stack, and an empty parse tree. Then, we invoke the
function convertp and collect all the parse trees from the resulting
configurations. The convertp function performs the main traver-
sal and is defined below. It takes a set C of configurations and an
input and returns a set of configurations.

convertp(C, ε) = { (s,⊥, k, p, b) ∈ pmsp(C) | s ∈ F }

convertp(C, <e>t1</>t2)) = convertp(C
00, t2)

where
C0 = convertp(downp(pmsp(C), <e>t1</>), t1)

C00 = { (s0, x⊥, k, p, b) | (s,⊥, ((s0, x⊥); k), p, b) ∈ C0 }

In both cases, we first process markers by the pms function defined
as

pmsp(C) =
Ω
pmp(vn, (. . . (pmp(v1, c)) . . .))

c = (s, x⊥, k, p, b) ∈ C,
(v1; . . . ; vn) = χ(s)

æ

where
pmp(BB(xT), (s,⊥, k, p, b)) = (s, xT , k, p, b⊕ {xT 7→ ε})
pmp(BE, (s, xT , k, p, b)) = (s,⊥, k, p, b)
pmp(AB(xN), (s,⊥, k, p, b)) = (s,⊥, k, ((xN , b); p), {})
pmp(AE, (s,⊥, k, ((xN , b0); p), b)

= (s,⊥, k, p, b0 ⊕ {xN 7→ b})).
These definitions are the same as those in the semantics except that
pmsp here deals with a set of configurations and pmp here takes
a parsing configuration (with no change to the continuation list).
After the marker processing, in the case of an empty sequence
value, we drop all configurations whose states are not final. In the
case of a value <e>t1</>t2, we form a set of configurations for
processing the content t1 by using the downp function shown below
and proceed the traversal by a recursive call to convertp. In the
resulting set C0, the head of each configuration’s continuation list
gives the state to continue for processing the remainder sequence
t2. Therefore we form another set C00 of configurations for the
continuation states and perform another traversal by convertp.
The function downp is defined as follows.

downp(C, <e>t</>) =

(s1,⊥, k0, p, b0)

(s, x⊥, k, p, b) ∈ C,
(s, e, s1, s2) ∈ ∆,
k0 = ((s2, x⊥); k),
b0 = chtl(x⊥, b, <e>t</>)

That is, for each configuration in C and each transition from s, we
form a new configuration in which we take the content state s1, the
closed scope ⊥, the current continuation list k added with the pair
of the remainder state s2 and the current scope x⊥, the current stack
p, and the current parse tree b possibly appended with the element
<e>t</> in case x⊥ is open (by using the chtl function defined in
the last subsection).
Although the parsing phase traverses each node only once, it

can potentially generate an exponential number of parse trees. For
example, matching

((var x as a[String]) | (var y as a[String]))*

against a sequence of n a elements will yield a set of 2n parse
trees. However, such a pattern seems to be rare and, indeed, our
experimental results in Section 5 indicate no blow-up.

Theorem 4.1 (Soundness) If b ∈ parseM (t) under a parsing
automatonM , thenM parses t to b.

Theorem 4.2 (Completeness) If a parsing automaton M parses a
value t to a parse tree b, then b ∈ parseM (t) underM .

Theorem 4.3 (Termination) The algorithm parse terminates for
any input.

4.3 Unparsing phase
The unparsing phase takes the “RHS” parsing automaton MR =
(S, S0, F, ∆, χ) and the set of parse trees resulted from the parsing
step. It then performs a traversal with only one visit to each node
in the set of parse trees, and produces the set of all possible output
values. This time, the algorithm uses sets of unparsing configura-
tions each of the form d = (s, t⊥, b, l, q, t) where each component
is explained below.

• s ∈ S is the current state.
• b ∈ B is the current parse tree; while the parsing phase produces
it, the unparsing phase consumes it.

• t⊥ ∈ T ∪ {⊥} is the current value to verify; when entering
in a scope of a variable, we not only need to consume a value
from its binding and emit it to the output, but also need to check
that the transitions within this scope accept this value; t⊥ holds
the value currently being checked (and thus is also a value to
consume); outside any scope, t⊥ is set to ⊥.

• l ∈ (S × (T ∪ {⊥}) × T × L)∗ is the current list of unpars-
ing continuations each of the form (s, t⊥, t, e); it is explained
below.

• q ∈ B∗ is the current unparsing stack; unlike the parsing phase,
the unparsing phase records only parse trees; it is also explained
below.

• t ∈ T is the current output value; while the parsing phase de-
constructs a value, the unparsing phase constructs it. Further-
more, while the parsing phase takes a single input value for all
the configurations, the unparsing phase keeps one parse tree for
each configuration since different configurations may yield dif-
ferent results.

Like in the parsing phase, the roles of a list of unparsing continua-
tions and an unparsing stack are different. Unparsing continuations
are for saving some information at the entrance of a content state
and for restoring them at its exit and continuing with the remain-
der state. For example, suppose that we encounter a transition rule
(s, e, s1, s2) with a configuration (s, t⊥, b, l, q, t) and proceed to
the content state s1. From this, we eventually reach the final state
and, at this point, we need to recall that the remainder state is s2,
that we had been verifying the value t⊥, that we had already con-
structed the partial output t, and that the label of the transition rule
is e. Therefore we record these pieces of information in the contin-
uation list and, afterward, we can continue from the state s2 with
the current output t<e>t0</>, which can be constructed from the
previous output t, the label e, and the output t0 obtained from the
processing from the content state s1.
An unparsing stack is, on the other hand, for saving some

information when following an AB(xN) marker and for restoring it
later when following its corresponding AE. For example, consider
the situation where we follow an AB(xN) with a configuration
(s, t⊥, b, l, q, t) and then proceed to the sub-automaton between
the AB(xN) and the AE. At the moment exiting from this, we need
to recall that we had been consuming the parse tree b. We need not
memorize other components, in particular, the value t⊥ to verify
since the nesting constraint requires that, at the moment of seeing
the AB(xN), we are out of any scope and therefore t⊥ must be ⊥.
Now, we formalize the unparsing phase by the following func-

tion unparse

unparseM (B) =
Ω

t
(s,⊥, {}, •, •, t) ∈ convertu(D0),
D0 = { (s,⊥, b, •, •, ε) | s ∈ S0, b ∈ B }

æ

where B is the set of parse trees obtained from the parsing phase
andD0 is the initial set of unparsing configurations each consisting
of an initial state, no value to verify, a parse tree from B, an empty
list of continuations, an empty stack, and an empty output value.
(As before, we fix the automatonM and omit any mention of it in
the following. Also, each function for unparsing has the subscript u

for distinguishing it from a similar one for parsing.)We then run the
convertu function defined below and collect the set of the output
values from the resulting configurations.
The main traversal function convertu is defined by the follow-

ing.

convertu(∅) = ∅
convertu(D) = { (s, t⊥, b, l, q, t) ∈ D0 | s ∈ F, t⊥ ∈ {≤,⊥} }

∪ convertu(D00)

where
D 6= ∅
D0 = pmsu(D)

D00 =

(s0, t⊥, b, l, q, t0<e>t</>) |
(s, t0⊥, b, ((s0, t⊥, t0, e); l), q, t)

∈ convertu(downu(D0))

That is, if the given set of configurations is empty, we return an
empty set of results. Otherwise, we first process the markers by the
pmsu function defined as

pmsu(D) =
Ω
pmu(vn, (...(pmu(v1, d)) . . .))

d = (s, t⊥, b, l, q, t) ∈ D,
(v1; . . . ; vn) = χ(s)

æ

where

pmu(BB(xT), (s,⊥, {xT 7→ t0}⊕ b, l, q, t))
= (s, t0, b, l, q, t)

pmu(BE, (s, ε, b, l, q, t)) = (s,⊥, b, l, q, t)
pmu(AB(xN), (s,⊥, {xN 7→ b}⊕ b0, l, q, t))

= (s,⊥, b, l, (b0; q), t)
pmu(AE, (s,⊥, {}, l, (b; q), t)) = (s,⊥, b, l, q, t).

The unparsing phase processes markers roughly in a way symmet-
ric to the parsing phase. For a BB(xT), we remove the first value
t0 from the list to which xT is bound in the current parse tree and
set the value-to-verify to t0. The actual verification on t0 will be
done by the downu function defined in the next paragraph. For a
BE, we check the current value-to-verify to be fully consumed (ε)
and then set it to the absence (⊥). For an AB(xN), we remove the
first sub-parse-tree b from xN ’s binding in the current parse tree,
set the current parse tree to b, and save the remaining parse tree
to the stack. For an AE, we check the current parse tree to be fully
consumed ({}), restore b from the stack, and set the current parse
tree to b. Analogously to the parsing phase, the nesting and the
non-overlapping constraints guarantee that a BB(xT), a BE, and an
AB(xN) can assume the current value-to-verify to be absent. How-
ever, a failure may occur in BE’s check whether the current value-
to-verify is ε and in AE’s check whether the current parse tree is {},
in which cases the function pm is not defined; in other words, the
configuration being processed is dropped at this point.
In the convertu function, after processing markers, we collect

the configurations with final states and form a set of the results that
can be yielded at this moment. Then, we proceed further for finding
other results. For this, we first use the following downu function for
constructing a set of configurations from the content states of all

possible transitions.

downu(D) =

 (s1,⊥, b, l0, q, ε)
(s,⊥, b, l, q, t) ∈ D,
(s, e, s1, s2) ∈ ∆,
l0 = ((s2,⊥, t, e); l)

∪

 (s1, t1, b, l
0, q, ε)

(s, <e>t1</>t2, b, l, q, t) ∈ D,
(s, e, s1, s2) ∈ ∆,
l0 = ((s2, t2, t, e); l)

Such configurations come from two clauses, depending on whether
the value to verify is present or not. The first clause is for the
case where it is absent: for each such configuration and for each
transition rule from the current state, we form a new configuration
whose state is the content state s1, whose list of continuations is
a new one l0 (explained below), and whose current output is an
empty sequence (the other components remain the same). In the
new list l0 of continuations, we save, on top of the old one l, a
tuple of the remainder state s2, the absence of a value to verify, the
current parse tree, and the label e. The second clause is for the case
where the value to verify is present and has the form <e>t1</>t2:
we create a similar new configuration except that the value to verify
is set to the content value t1 in the new configuration and that the
remainder value t2 is saved in the head of its continuation list as
the value to verify after returning to the parent level.
The convertu function recursively applies itself to the set of

new configurations formed above and obtains a set of resulting
configurations for the “content” part. After this, from each resulting
configuration, we form a new configuration for obtaining results for
the “remainder” part. For this, as already explained, we first remove
the head tuple (s0, t⊥, t0, e) from the continuation list, then set the
current state to s0 and the value-to-verify to t⊥, and finally append
the element <e>t</e> to the end of the output value t0. With
th obtained set of configurations, we invoke again the convertu

function.
An important optimization used in our implementation of the

unparsing phase is that, at each call to convertu, we drop each
configuration whose parse tree has some (terminal or non-terminal)
variable still bound to a non-empty list but with no possibility to be
consumed in the subsequent processing. Whether each variable’s
binding may or may not be consumed after each state can easily
be calculated statically either during the automata construction
or by a simple static analysis on the constructed automata (our
implementation takes the former). Without this optimization, the
unparsing phase can easily blow up. A typical situation is when we
have a concatenation of several repetitions each of which uses a
different non-linear variable. For example, consider the following
relation.

a[var x]*, b[var y]*, c[var z]*

Each time after we consume one of x’s values and emit an a
element, there are two possibilities, one for going back to emit
the next a element and the other for proceeding to emitting b
elements. Without the above optimization, we never know that
the second possibility is redundant when there still remain x’s
values, which must be consumed. Therefore, if each variable is
bound to n values and there are k repetition patterns, then this
would generate O(nk) possibilities. This optimization is further
effective in conjunction with simplification described in the end of
Section 4.1. For example, for the pattern

(a[var x] | b[var y] | c[var z])*

the above optimization by itself does not help avoiding explosion,
but it does after simplification, which translates the above pattern
to a[var x]*,b[var y]*,c[var z]*.

Note, however, that neither the simplification or the optimiza-
tion eliminates all exponential blow-ups. For example, during un-
parsing with the pattern

(var x as a[String])*, (var x as a[String])*

and a parse tree that binds x to a list of n a elements, up to 2n

configurations may be generated. As in the parsing phase, our
experiments in Section 5 support that an actual blow-up rarely
happens.
Finally, our algorithm is formalized in a way that returns the

set of all possible outputs, but can stop as soon as one output is
found. However, this is safe only at the top level where there is no
continuation; in a deeper level, each configuration may consume
parse trees in different ways and not all of them are necessarily
correct—they need to further be checked in the continuation.

Theorem 4.4 (Soundness) If t ∈ unparseM (B) under a parsing
automatonM , thenM parses t to some b ∈ B.

Theorem 4.5 (Completeness) If a parsing automaton M parses a
value t to a parse tree b, then t ∈ unparseM (B) underM for any
B with b ∈ B.

Theorem 4.6 (Termination) The algorithm unparse terminates
for any input.

The proof of termination relies on the automaton’s structural con-
straint resulting from the simplification procedure.

5. Performance Experiments
We have implemented a prototype system of the biXid language
in O’Caml and measured its run-time performance with several
application programs written in biXid. The experiments have been
done with the O’Caml native-code compiler (3.08.0) and an iBook
G4 (1.33GHz) equipped with 512MB memory running Mac OS X
(10.4.5). The applications that we have used are the following.
Bookmarks A conversion between the well-known bookmark for-
mats Netscape and XBEL [21]. XBEL has a DTD in 94 lines.
Netscape’s DTD is not available but should have a similar size
since both formats have structures almost in parallel. The con-
version program is in 65 lines and only slightly bigger than the
simplified version shown in Section 2.1.

Address books A conversion between vCard-XML [18] and Con-
tactXML [7]. These are formats for address books indepen-
dently defined by different organizations and therefore have
structures with various discrepancies (see Appendix B). The
DTDs of vCard-XML and ContactXML are each in 390 lines
and in 110 lines, and the conversion program is in 175 lines.

BibTeX A conversion between two formats, Gundersen and Hen-
drikse’s BibTeXML (GH-Bib) [11] and Wilde’s BibTeXML
(W-Bib) [23], for representing BibTeX files in XML. These are
defined by different people and thus have quite different struc-
tures. GH-Bib (816 lines of DTD) uses separate tags for ex-
pressing by its schema different field requirements associated to
each kind of bib-entries (inproceedings etc.), whereasW-Bib
(71 lines of DTD) uses only a single tag with a generic content
model, thus hands to the user the responsibility to check such
bib-entry-wise requirements. The conversion program is in 680
lines.

For each application, we measured (by using the Unix time com-
mand) the average of the times spent by 10 runs in either direction
of conversion, varying the size of the input document. The results
are shown in Figure 3. Since each run includes the static parts of our

algorithm (e.g., automata construction), we can see some overhead
taken even for 0-byte inputs. We have not made enough efforts to
optimize the static part since these are pretty standard and should be
a matter of work. The remaining time is for the dynamic part, for
which the figure shows a clear linear-time performance w.r.t. the
input size. In Sections 4.2 and 4.3, we have pointed out potential
blow-ups, but we do not observe any symptom in the figure.

Figure 3. Times spent for the conversion

6. Future Work
This work is only the first step towards a full-fledged language
design and implementation and there are a variety of possible future
directions. On the design side, a few more useful features are worth
investigating. Firstly, as explained in Section 3, we sometimes wish
to take a part of data appearing on one side and duplicate it on
the other side. This is currently not allowed since its inverse needs
to check the structural equality of several separate parts, which
would considerably complicate the algorithm but there could be
some way to simplify it. Secondly, an important facility that is
missing here is shuffle expressions like P&Q, which matches any
interleave of a sequence from P and one from Q. Some forms of
shuffle expressions are supported by several schema languages like
XML-Schema [9] and RELAX NG [5] and more and more formats
actually use this feature. Thirdly, the current design has no way to
transform a table-like document in a way to swap the rows and the
columns. There is a substantial number of applications that would
critically use such feature. However, this seems to go beyond our
design principle based on finite automata and a separate, special
language may be more appropriate.
On the algorithmic side, while the current evaluation algorithm

has two phases, parsing and unparsing, we could think of a further
improvement that bypasses the construction of a part of parse
trees and directly yields the output. Also, while the present work
considers only a dynamic aspect, we are eager to investigate static
verification, e.g., typechecking.

Acknowledgments
We are most grateful to Makoto Murata, who participated in the
start-up of the present project and made a significant influence to
the current design of the biXid language. We thank members of
the POPL seminar at the University of Tokyo for stimulating dis-
cussions. We had lots of valuable comments and suggestions from
Zhenjiang Hu, Benjamin Pierce, Claus Brabrand, and anonymous
ICFP referees. This work was partly supported by Japan Society
for the Promotion of Science.

References
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric

general-purpose language. In Proceedings of the International
Conference on Functional Programming (ICFP), pages 51–63, 2003.

[2] R. Bourret. XML data binding resources, 2001. http://
www.rpbourret.com/xml/XMLDataBinding.htm.

[3] C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for
XML languages. In Proc. 10th International Workshop on Database
Programming Languages, DBPL ’05, volume 3774 of LNCS, pages
27–41. Springer-Verlag, August 2005.

[4] J. Clark. XSL Transformations (XSLT), 1999. http://
www.w3.org/TR/xslt.

[5] J. Clark and M. Murata. RELAX NG, 2001. http://
www.relaxng.org.

[6] J. Coelho and M. Florido. Type-based XML processing in logic
programming. In PADL, pages 273–285, 2003.

[7] ContactXML Users Group. ContactXML, 2000. http://
www.contactxml.org/.

[8] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems,
2nd Edition. Benjamin/Cummings, 1994.

[9] D. C. Fallside. XML Schema Part 0: Primer, W3C Recommendation,
2001. http://www.w3.org/TR/xmlschema-0/.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transformations: A
linguistic approach to the view update problem. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages
(POPL), pages 233–246, 2005.

[11] V. B. Gundersen and Z. W. Hendrikse. BibTeX as XML markup,
2005. http://bibtexml.sourceforge.net/index.html.

[12] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[13] H. Hosoya. Regular expression pattern matching — a simpler design.
Technical Report 1397, RIMS, Kyoto University, 2003.

[14] H. Hosoya and M. Murata. Boolean operations and inclusion test
for attribute-element constraints. In Eighth International Conference
on Implementation and Application of Automata, volume 2759 of
Lecture Notes in Computer Science, pages 201–212. Springer-Verlag,
2003.

[15] H. Hosoya and B. C. Pierce. Regular expression pattern matching for
XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 67–80, Jan. 2001.

[16] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing
language. ACM Transactions on Internet Technology, 3(2):117–148,
2003. Short version appeared in Proceedings of Third International
Workshop on the Web and Databases (WebDB2000), volume 1997 of
Lecture Notes in Computer Science, pp. 226–244, Springer-Verlag.

[17] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. ACM Transactions on Programming Languages and Systems,
27(1):46–90, 2004. Short version appeared in Proceedings of the
International Conference on Functional Programming (ICFP), pp.11-
22, 2000.

[18] R. Iannella. Representing vCard objects in RDF/XML, 2001.
http://www.w3.org/TR/vcard-rdf.

[19] S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-
directional updating. In APLAS, pages 2–20, 2004.

[20] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema
languages using formal language theory. In Extreme Markup
Languages, 2001.

[21] Python XML Special Interest Group. The XML bookmark exchange
language, 1998. http://pyxml.sourceforge.net/topics/
xbel/.

[22] L. Sterling and E. Y. Shapiro. The Art of Prolog—Advanced
Programming Techniques. MIT Press, 1986.

[23] E. Wilde. BibTeXML (BibTeX markup language), 2004. http://
dret.net/projects/bibtexml/.

Appendix

A. Translation from Relations to Automata
We take two steps for the translation from a given program to
automata: (1) canonicalization of patterns and (2) construction of a
parsing automaton. The first step is to collect the patterns appearing
on one of the two sides and convert them into a certain form that
makes the second step easy.
Canonicalization First of all, we rename non-terminal variables
appearing in each relation so that the corresponding ones have
the same name, i.e., whenever r(xN , x0N) is in the where-clause,
replace each occurrence of xN in the LHS pattern with x0N and
rewrite r(xN , x0N) itself to r(x0N , x0N).
Let us assume a set of names, ranged over by X , and define a

grammar as a mapping from names to expressions, where expres-
sions E are defined by the following syntax.

E ::= ()
ØØ var x as E

ØØ varrel x as E
ØØ e[E]

ØØ E, E
ØØ (E|E)

ØØ E∗
ØØ X

We assume the special nameXtop to be in the domain of any gram-
mar. The canonical grammarGc for the LHS of a given programΠ
(similarly for that for the RHS) is obtained by the following proce-
dure.
1. Build a grammar G such that G(Xr) = E for each r ∈

dom(Π) where
Π(r) = PL ↔ PR whereW

and E is obtained after replacing each (var xN) appearing in
the pattern PL by (varrel xN as Xr0) where r0(xN , xN) ∈
W .

2. Convert the grammar to another equivalent one in such a way
that each expression is canonical, i.e., described by the follow-
ing syntax.

C ::= ()
ØØ var x as C

ØØ varrel x as C
ØØ e[X]

ØØ C, C
ØØ (C|C)

ØØ C∗
In this form, a use of a name X can appear only as the content
of an element and each element must have a name as its content.
The conversion is entirely standard and therefore elided here.

Automata construction In this step, for simplicity, we first create
a parsing automaton with ≤-transitions and then eliminate them
afterward.
Given a canonical grammar G from the previous step, for each

name X ∈ dom(G), we first convert the corresponding canoni-
cal expression Π(X) to a fragment of parsing automaton and then
package all the resulting fragments into a single parsing automa-
ton. In the conversion part, we construct an automaton fragment
(sX

0 , sX
1 , ∆X , χX) where sX

0 is an initial state, sX
1 is a final state,

∆X is a set of transition rules of the form either (s, e, s0, s00) or
(s, s0), and χ is a mapping from states to lists of markers. The con-
struction is done in an inductive manner from inner expressions to
outer expressions is mostly standard (cf. [12]) except for element
and variable expressions. For an element expression e[X], we con-
struct the following automaton

s0
e[sX]

s1

with freshly generated states s0 and s1. Here, sX is a special state
associated to each name X ∈ dom(X) and will be used for

later packaging all the constructed automata. A terminal-variable
expression var xT as C and a non-terminal variable expression
varrel xN as C are each translated to the following

BB(xT) BE

s00
≤ s0 MC s1

≤
s01

AB(xN) AE

s00
≤ s0 MC s1

≤
s01

whereMC is the sub-automaton corresponding to the sub-expression
C whose initial and final states are s0 and s1 and the states s00 and
s01 are freshly generated for the resulting automaton. Except for
these variable cases, the marker assignment χ associates each state
with an empty list.
Then, we put together all the resulting automaton fragments

into a single parsing automaton (S, S0, F, ∆, χ) possibly with ≤-
transitions where
S =

S
X∈dom(G)({s

X
0 , sX

1 } ∪ {s, s0, s00 | (s, e, s0, s00) ∈ ∆X})
S0 = {sXtop

0 }
F =

S
X∈dom(G) F X

∆ =
S

X∈dom(G)(∆
X ∪ {(sX , sX

0)})
χ =

S
X∈dom(G) χX .

Finally, we obtain the desired parsing automaton
M 0 = (S0, S00, F

0, ∆0, χ0) by ≤-elimination:

S0 =

 (s1; . . . ; sn)
s1 ∈ S,
(s1, s2) ∈ ∆, . . . , (sn−1, sn) ∈ ∆,
i 6= j ⇒ si 6= sj

S00 =
©

(s1; . . . ; sn) s1 ∈ S0

™

F 0 =
©

(s1; . . . ; sn) sn ∈ F
™

∆0 =

(s1, e, s2, s3)

(s1l, e, s21, s31) ∈ ∆,
s1 = (s11; . . . ; s1l) ∈ S0,
s2 = (s21; . . . ; s2m) ∈ S0,
s3 = (s31; . . . ; s3n) ∈ S0

χ0 = { (s1; . . . ; sn) 7→ (χ(s1); . . . ; χ(sn)) | (s1; . . . ; sn) ∈ S0 }
Here, we take, as a state of the result automaton, each list of original
states connected by ≤-transitions. Note that the “non-nullability of
repeated patterns” constraint (Section 3.1) ensures that there is no
loop by ≤-transitions and therefore the set of all such lists is finite.
Then, we associate each list of states with the list of markers that
have been associated to those states.

B. Programming Experiments
In this section, we present an example of mutual conversion be-
tween vCard-XML and ContactXML for exposing the practicality
of the expressiveness of our language. We here show only a part of
the actual program, which is substantially longer to handle the full
specifications of these formats.
As already mentioned, both are different formats for address

books. A vCard-XML document holds a list of contact information
under the root tag iq; similarly for a ContactXML document except
that the root has tag ContactXML.
relation top =
iq[(var x)*] <-> ContactXML[(var y)*]

where
vcard-contact(x, y)

Naturally, each item in iq is related to each item in ContactXML
by the relation vcard-contact defined below.

relation vcard-contact =
vCard[var namepart, var body]

<->
ContactXMLItem[PersonName[var namepart’],

var body’]
where
name-part(namepart, namepart’),
body(body, body’)

This relates the first half of the content of a vCard element to the
content of a PersonName, and the second half of the vCard to the
remainder after the PersonName. The former relation is described
by name-part and the latter by body. The name-part relation is:

relation name-part =
FN[var fullname as String],
N[FAMILY[var lastname as String],
GIVEN [var firstname as String],
MIDDLE[var middlename as String]]

<->
PersonNameItem[
FullName[var fullname as String],
FirstName[var firstname as String],
MiddleName[var firstname as String],
LastName[var lastname as String]

]

The body relation describes the main contents. For brevity, we
only show parts for addresses, telephones, emails, and images.

relation body =
(var adr | var email | var phone)*

<->
Address[(var adr’)*],
Phone[(var phone’)*],
Email[(var email’)*],
Image[@..., AnyElem*]

where
address(adr, adr’),
email(email, email’),
phone(phone, phone’)

First, for image parts, there is no way to represent them on the
vCard-XML side and therefore they have to be dropped on the
backward transformation. For the other parts, on the vCard-XML
side, each piece of information is kept in a separate element ADR,
EMAIL, or TEL and all such elements can appear in an unordered
and repeated manner. On the ContactXML side, all addresses are
packed in a single element Address and similarly for the other
kinds of information. Therefore expressing a conversion between
these parts necessarily involves a data reordering. Our support for
non-linear variables can exactly implement this.
In the above, the pattern @... allows arbitrary attributes to

be present and AnyElem matches any element; thus, the forward
transformation fills a junk for this part whereas the backward drops
it. The relation on emails is given by the following. (The relations
for addresses and phones are analogous and so elided here.)

relation email =
EMAIL[
INTERNET[var pc as ()]?,
CELL[var cell as ()]?,
WORK[var official as ()]?,
HOME[var private as ()]?,
USERID[var email as String]]

<->
EmailItem[
@emailDevice["PC", var pc as ()]?,

@emailDevice["Cellular", var cell as ()]?,
@usage["Official", var official as ()]?,
@usage["Private", var private as ()]?,
var email as String]

Here, the presence of an INTERNET element corresponds to the
presence of an emailDevice attribute with the string content "PC".
For this, we use a little trick to represent a one-bit flag by a variable
optionally bound to an empty sequence.

